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Abstract 

In color AM halftoning, moiré is the low frequency spatial 
artifact generated by the interference of superimposed 
primary color dot screens that adds an artificial texture to 
the printed image and renders the image visually unpleas
ing. When these overlapping dot screens that form FM 
halftones, this interference pattern follows a random spatial 
distribution resulting in “stochastic” moiré. In this paper, we 
show that stochastic moiré is at its most visible when two 
overlapping dither patterns have the same relative spacing 
between dots. We will also show the measured stochastic 
moiré visibility for several traditional error-diffusion 
algorithms. 

1. Introduction 

In inkjet printing where the variation in the printed dot is 
sufficiently small as to allow FM halftoning, the spatial 
distribution of dots is stochastic, as opposed to regular, and 
was thought to avoid the moiré phenomenon in color 
printing. But recently, it has been shown by Lau et al1 that 
stochastic FM halftoning exhibits low frequency graininess 
that is created by fluctuations in texture for two overlapping 
FM patterns. These fluctuations in texture are referred to by 
Lau et al as stochastic moiré. For a demonstration of 
stochastic moiré, Fig. 1 shows two instances of two color 
(cyan and magenta) FM halftones. 

In Fig. 1 (top), the halftoning algorithm creates large 
patches of “light” textures where cyan dots have a very high 
probability of overlapping a magenta dot and large patches 
of “dark” textures where cyan dots have a very low 
probability of overlapping magenta. In Fig. 1 (bottom), a 
different halftoning algorithm is used with the halftone 
showing much smaller patches of light and dark textures. 
Now in this figure (Fig. 1 (bottom)), the fluctuations in 
texture from light to dark occur at a much faster rate per 
unit length than in Fig. 1 (top), and Fig. 1 (bottom) is, 
therefore, composed of much higher spatial frequency 
content than Fig. 1 (top) because of this. The HVS, being 
less sensitive to high frequency spatial content, is less 
conscious of the fluctuations in texture occurring in Fig. 1 
(bottom), and it is Fig. 1 (top) that is more likely to draw 
objections from the viewer. The stochastic moiré in Fig. 1 
(top) is, therefore, considered to be more visible than in Fig. 
1 (bottom). 

Figure 1. Two color halftone patterns generated using error 
diffusion with the black and white diagrams indicating regions 
where the minority pixels of cyan and magenta do (black) and do 
not (white) overlap. These black and white diagrams were created 
by hand. 

2. Spectral Analysis of Stochastic Moiré 

Figure 2 shows several stochastic halftone patterns with 
each composed of 6.25% (1/16) cyan coverage and 6.25% 
magenta coverage. Shown in pattern A is the case where 
magenta pixels are placed directly on top of all cyan pixels. 
Pattern C shows the instance where minority pixels of cyan 
and magenta are homogeneously distributed such that 
magenta pixels are placed midway between cyan pixels. 
While it may be argued by a given observer that pattern A 
creates a hue different from that of pattern C, we ignore 
those differences focusing on the fact that pattern A 
certainly portrays a different texture from that of C. Any 
differences in hue are assumed to be corrected by 
manipulating the percentage of coverage of the various inks. 
Now while A and C have different textures, we make no 
claims as to whether A or C is a better texture. 
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Figure 2. Three two-color halftone patterns illustrating (A) 
perfectly overlapping or in-phase pixels, (B) uncorrelated pixels, 
and (C) perfectly non-overlapping or out-of-phase pixels. 

Noting pattern B, the magenta and cyan dither patterns 
are completely uncorrelated with some minority pixels (of 
both patterns) overlapping and some falling directly in 
between those of the other. All other minority pixels fall 
some where in between these two extremes. From pattern B, 
we define stochastic moiré as the change in texture that 
occurs from one point to another within a given halftone. 
Like periodic moiré, the optimal stochastic halftone is the 
one that either minimizes or maximizes the amount of 
fluctuation in this texture per unit area. In the case of pattern 
A and C, the amount of fluctuation is minimized with 
patterns A and C offering equivalent optimality regarding 
moiré. 

For a formal definition of stochastic moiré, Lau et al1 

define a discrete-space, 2-D function D[n] from the dither 
patterns φA = {ai : i = 1, 2, . . . ,N} and φB = {bj : j = 1, 2, . . ., 
M} such that: 

1 N 

D[n] = ∑ diδ[n − ai ],where  (1)
λb i=1 

di = min ai − bj  (2) 
j 2 

In its eqn. (1) form, D[n] represents a continuous-space 
signal D(x), an image we will refer to as the stochastic 
moiré surface, that has been sampled on a stochastic 
sampling grid defined by φA. 

If the sampling grid has a Poisson distribution, be the 
case of a blue-noise dither pattern with wavelength λ a, we 
can obtain D(x) from D[n] ideal low-pass filter with cutoff 

-1frequency 0.5λ a magnitude λ 2, Fig. 3. The magnitude of a a 

2the low-pass derived from Papoulis who shows that if x[n] 
is the sampled signal of x(t) defined by a Poisson sampling 
process with average density g, then the sum 

~ 
X( f ) = 1 ∑ x[n]e− j2πfn (3) 

g n 

is an unbiased estimate of X(f), the Fourier transform of x(t), 
given that the aliases are nulled out. Hence Fourier 

2transform of D[n] is scaled by 1/g or equivalently by λ to a 

obtain the unbiased estimate D(f). 
Given our stochastic moiré surface, characterizing 

stochastic moiré is now reduced to the problem of charac
terizing the spatial fluctuations in the continuous-space, 2-D 
surface D(x). How we measure spatial fluctuations in this 
new monochrome image is arbitrary, but it is important to 
take into account our understanding of the human visual 
system to put a higher cost on mid-frequency fluctuations as 
opposed to very low or very high. Perhaps the easiest way 
to measure the visibility of stochastic moiré is to measure 
the visual cost3 of the stochastic moiré surface as: 

VC(φA,φB ) = E{AC Power(�( f ) × HVS( f ))},  (4) 

where HVS(f) is the spectral, low-pass filter model of the 
human visual system used by Sullivan et al.3 

Figure 3. Diagram of the spectral domain representations (a) the 
Poisson point process defining the sampling the circular
bandlimited stochastic moiré surface with less than half the 
principle frequency, and (c) the power of the sampled surface with 
no aliasing. 
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Figure 4. Two examples of stochastic moiré and the 
corresponding moiré surfaces produced by superimposing two FM 
halftone patterns. 

For an illustration of eqn. (4) as our new stochastic 
moiré metric, Fig. 4 shows two examples of stochastic 
moiré and the surfaces that corresponding to the halftone 
patterns. These particular surfaces have visual cost measures 
of (top) 0.0346 and (bottom) 0.0205. Here, we are assuming 
a 300 dpi printer and a viewing distance of 20 inches. Com
parison of the two visual costs suggests an improvement in 
color rendition from the (top) pattern of Fig. 4 to the 
(bottom). Visual inspection certainly validates these results. 

As a demonstration of eqn. (4)’s feasibility at quantita
tively measuring stochastic moiré, we can compare the 
resulting visibility measures for 2-color halftoning using 

4 5 6Floyd’s and Steinberg’s, Jarvis et al’s, Stucki’s, and 
7Ulichney’s error-diffusion. It is well documented that 

Floyd’s and Steinberg’s error-diffusion creates strong 
periodic textures at gray levels 1/4, 1/3, and 1/2 while Jarvis 
et al’s does so at gray level 1/3 and Stucki at 1/3. Through a 
perturbation of error filter coefficients, Ulichney’s error
diffusion breaks up periodic textures in the dither pattern – 
creating a far more pleasant blue-noise halftone. In all cases, 
strongly correlated textures result in distinct features in the 
visual cost plots of Fig. 6. In Fig. 5, we show several of the 
corresponding stochastic moiré surfaces that are indicated in 
Fig. 6 by the dashed grid lines and correspond to these 
particularly interesting cases of moiré. 

In the case of Floyd’s and Steinberg’s for gray levels 
(ga, gb) = (0.25, 0.25) and (0.50, 0.50), the strong periodic 
textures of the monochrome dither patterns create large 
patches of fixed phase between A and B (the component 
dither patterns) – leading to large near-DC components in 
the stochastic moiré surface and, therefore, large visibility 
measures. A similar phenomenon occurs at gray level (ga, 
gb) = (0.33, 0.33) but to a much lesser degree. Jarvis et al’s 
suffers similar correlation, to Floyd’s and Steinberg’s, at 

gray level (ga, gb) = (0.33, 0.33) but eliminates the high 
visual cost everywhere else. Stucki’s follows the behavior 
of Jarvis et al’s closely but with added correlation at (ga, gb) 
= (0.50, 0.50) where the visual cost is very high. 

Figure 5. Selected stochastic moiré surfaces for several error
diffusion techniques. 

Looking at Fig. 6, we would argue that Ulichney’s 
error-diffusion is the best of the four for minimizing 
stochastic moiré visibility. Our conclusion is not based on 
an average or median value taken from Fig. 6 but is, instead, 
based on Ulichney’s error-diffusion not having any extreme 
outliers or spikes in Fig. 6 like Floyd’s and Steinberg’s. Nor 
does Ulichney’s have any wildly varying or abrupt changes 
in the visual cost as do the other three. What this means for 
the color halftones created by Ulichney’s error-diffusion is 
that smooth gradients will show a more consistent behavior 
in texture. 
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Figure 6. Plots of the visual cost of stochastic moiré versus minority pixel intensity level for several error-diffusion schemes. 

We, clearly, see this in Fig. 7 for two color gradients 
where a binary halftone is produced by a combining of the 
component halftones using a pixelwise logical OR function 
(1=black) where the large visibility measure of Floyd’s and 
Steinberg’s along the lines ga = 0.25 and gb = 0.25 is clearly 
apparent by observation in Fig. 7. Jarvis et al’s and Stucki’s 
have the exact same problem along the ga = 0.33 line and 
the gb = 0.33 line. While the visibility measure may be 
lower along these lines, the halftone textures are very 
uncharacteristic of the rest of the halftone. What we see in 
Ulichney’s is a halftone with no dramatic shifts texture with 
the same visible impression of noise across the entire 
pattern. What you may notice, if anything, is greater 
variation in texture along the diagonal where ga = gb. 

Surprisingly, the increased visibility of stochastic moiré 
along the cyan equal to magenta line is a natural property of 
blue-noise, and this can be seen if we note that blue-noise 
halftoning produces a Poisson point process and that 
maximizing spatial fluctuations in texture is accomplished 
by breaking up clusters of in-phase or clusters of out of 
phase pixels in the halftone. We see this in 1-D given that φA 

= {a : m = 1, 2, . . .} and φB = {bn; n = 1, 2, . . .} represent m 

two Poisson point processes with an average separation 
between consecutive points of λA and λB, respectively. Now 
suppose that ai ∈ λA and bj ∈ λB are such that ai = bj, 
indicating that φA and φB are in-phase at ai. 
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Figure 7. The binary halftones created by combining the two channels using a pixelwise logical OR function (1=black) for halftones 
created by error-diffusion. 

In order for us to minimize the fluctuation in texture From eqn. (5), the probability that ai+1 overlaps bj+1 is 
between φA and φB around ai, we need to maximize the maximized when λA = λB for uncorrelated φA and φB. It is, 
probability that ai+1 overlaps bj+1 such that the texture therefore, stated that since λA and λB are functions of their 
remains constant in the region [ai, ai+1] where, for corresponding minority pixel intensities, fluctuations in tex
uncorrelated φA and φB, Pr(ai+1 = bj+1) is equal to: ture are minimized when the intensities of two component 

+∞ dither patterns are equal. Since we are weighting low 
∫x =ai 

Pr(ai+1 = x) ⋅ Pr(bj+1 = x)dx.  (5) 	 frequency artifacts, not DC, with greater weight than high, 
the corresponding visual cost of stochastic moiré will be 
maximized. 
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3. Conclusions 

Stochastic moiré refers to the low-frequency graininess 
exhibited by overlapping FM halftone patterns. In a pre
vious paper, we showed that measuring or characterizing 
stochastic moiré can be accomplished by measuring the 
shortest distance between the minority pixels of the com
ponent patterns. From this, we derived a continuous-space 
surface that completely characterizes the fluctuations in 
texture that occur between the overlapping patterns. In this 
paper, we showed that the visibility of stochastic moiré is its 
most visible when the component patterns have the same 
spacing between dots, and using several traditional error
diffusion schemes, we calculated the moiré visibility of two 
color halftones and could see noticeable artifacts in the 
halftone that directly correlate with high visibility measures. 

Given the natural tendency of blue-noise to maximize 
stochastic moiré visibility when two superimposed dither 
patterns have the same intensity, minimizing stochastic 
moiré visibility in these regions requires either that the 
intensity of one pattern be manipulated or that the statistical 
character of one of the patterns be varied. The second, and 
preferred approach, can be achieved by adding noise to the 
image prior to halftoning in these regions of equal intensity 
such that the average intensity, and hence the average hue, 
does not change.8 This can also be achieved by perturbing 
the quantization threshold used in error diffusion with low 
variance white-noise in these same regions. The overall 
effect is to “whiten” the spectral content of the correspond

9ing pattern, and thereby, increase the variability in the 
pattern with a minority pixel less likely to be found an exact 
distance _A from its nearest neighbors. 
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